Summary information and primary citation

PDB-id
5gse; SNAP-derived features in text and JSON formats; DNAproDB
Class
structural protein-DNA
Method
X-ray (3.14 Å)
Summary
Crystal structure of unusual nucleosome
Reference
Kato D, Osakabe A, Arimura Y, Mizukami Y, Horikoshi N, Saikusa K, Akashi S, Nishimura Y, Park SY, Nogami J, Maehara K, Ohkawa Y, Matsumoto A, Kono H, Inoue R, Sugiyama M, Kurumizaka H (2017): "Crystal structure of the overlapping dinucleosome composed of hexasome and octasome." Science, 356, 205-208. doi: 10.1126/science.aak9867.
Abstract
Nucleosomes are dynamic entities that are repositioned along DNA by chromatin remodeling processes. A nucleosome repositioned by the switch-sucrose nonfermentable (SWI/SNF) remodeler collides with a neighbor and forms the intermediate "overlapping dinucleosome." Here, we report the crystal structure of the overlapping dinucleosome, in which two nucleosomes are associated, at 3.14-angstrom resolution. In the overlapping dinucleosome structure, the unusual "hexasome" nucleosome, composed of the histone hexamer lacking one H2A-H2B dimer from the conventional histone octamer, contacts the canonical "octasome" nucleosome, and they intimately associate. Consequently, about 250 base pairs of DNA are left-handedly wrapped in three turns, without a linker DNA segment between the hexasome and octasome moieties. The overlapping dinucleosome structure may provide important information to understand how nucleosome repositioning occurs during the chromatin remodeling process.

Cartoon-block schematics in six views (download the tarball)

PyMOL session file Download PDB file View in 3Dmol.js

List of 1 5mC-amino acid contact

No. 1 I.5CM27: other-contacts is-WC-paired is-in-duplex [+]:CcT/AGG